Low Cost Surveying Using an Unmanned Aerial Vehicle
نویسندگان
چکیده
Traditional manned airborne surveys are usually expensive and the resolution of the acquired images is often limited. The main advantage of Unmanned Aerial Vehicle (UAV) system acting as a photogrammetric sensor platform over more traditional manned airborne system is the high flexibility that allows image acquisition from unconventional viewpoints, the low cost in comparison with classical aerial photogrammetry and the high resolution images obtained. Nowadays there is a necessity for surveying small areas and in these cases, it is not economical the use of normal large format aerial or metric cameras to acquire aerial photos, therefore, the use of UAV platforms can be very suitable. Also the large availability of digital cameras has strongly enhanced the capabilities of UAVs. The use of digital non metric cameras together with the UAV could be used for multiple applications such as aerial surveys, GIS, wildfire mapping, stability of landslides, crop monitoring, etc. The aim of this work was to develop a low cost and accurate methodology in the production of orthophotos and Digital Elevation Models (DEM). The study was conducted in the province of Almeria, south of Spain. The photogrammetric flight had an altitude of 50 m over ground, covering an area of 5.000 m approximately. The UAV used in this work was the md4-200, which is an electronic battery powered quadrocopter UAV developed by Microdrones GmbH, Germany. It had on-board a Pextax Optio A40 digital non metric camera with 12 Megapixels. It features a 3x optical zoom lens with a focal range covering angles of view equivalent to those of 37-111 mm lens in 35 mm format. The quadrocopter can be programmed to follow a route defined by several waypoints and actions and it has the ability for vertical take off and landing. Proper flight geometry during image acquisition is essential in order to minimize the number of photographs, avoid areas without a good coverage and make the overlaps homogeneous. The flight planning was done using the MdCockpit software, with the module waypoint editor. Flight route file was downloaded into the quadrocopter autonomous chip via cable. A total of twelve vertical images with a longitudinal and transversal overlapping of 60 % and 50 % respectively were taken. The digital camera was previously geometrically calibrated. Field control points covering the whole studied area were defined over the area of interest and their coordinates were measured by a GPS. Natural targets were used as field control points. The close range photogrammetric software Photomodeler Scanner v.7 was used in this work to calibrate the camera and to carry out the photogrammetric process. The software Golden Surfer was used to produce the DEM. The planimetric and the altimetric root mean square error (RMSE) were calculated in order to check the accuracy of the products. The RMSEx was 6 cm, the RMSEy was 4 cm and the RMSEy was 7 cm. Our preliminary results demonstrate the feasibility and accuracy of orthophotos and DEMs obtained from images captured from a quadrocopter using low cost photogrammetric software. A future work can be the comparison of the products obtained following the route used in this study where the images are taken vertically with the products obtained with an orbital route where the number of images will be diminished and the photos will be taken oblique.
منابع مشابه
UAV-based photogrammetry: monitoring of a building zone
The use of small-size unmanned aerial vehicles (UAV) for civil applications in many different fields such as archaeology, disaster monitoring, aerial surveying or mapping has significantly increased in recent years. The high flexibility and the low cost per acquired information compared to classical systems – terrestrial or aerial – offer a high variety of different applications. This paper add...
متن کاملLow-altitude Unmanned Airship Photogrammetry System
Constrained by the satellites orbits, Satellite Remote Sensing is difficult to achieve timeliness requirements. General aerial manned aircraft Remote Sensing is always delayed by the bad weather. Compared with Unmanned aerial vehicles, unmanned Airship can fly more lower and slower and you can get more clearer image. So it is more suitable for large scale mapping and other engineering requireme...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملAerial Rock Fragmentation Analysis in Low-Light Condition Using UAV Technology
In recent years, Unmanned Aerial Vehicle (UAV) technology has been introduced into the mining industry to conduct terrain surveying. This work investigates the application of UAVs with artificial lighting for measurement of rock fragmentation under poor lighting conditions, representing night shifts in surface mines or working conditions in underground mines. The study relies on indoor and outd...
متن کاملINS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying
This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS (inertial navigation system/global satellite navigation system) solutions based on MEMS (micro-electro-mechanical- sensor) machined sensors, being used for UAV (unmanned aerial vehicle) navigation and control as well as for aircraft motion dynamics analysis and traject...
متن کاملDesign of a Novel Auto-rotating Uav Platform for Underground Mine Cavity Surveying
The purpose of this paper is to investigate the potential for use of UAVs in underground mines and present a prototype design for a novel autorotating UAV platform for underground 3D data collection. The mining industry has recently shown increased interest in the use of unmanned aerial vehicles (UAVs) to assist in everyday operations [20, 11, 4]. Above ground, small UAVs are in some cases a mo...
متن کامل